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Abstract. The present paper examines the influence of the forcing frequency on the response of a randomly
perturbed Hodgkin-Huxley system in the realm of suprathreshold amplitudes. Our results show that, in
the presence of noise, the choice of driving frequency can seriously affect the precision of the external
information transmission. At the same level of noise the precision can either decrease or increase depending
on the driving frequency. We demonstrate that the destructive influence of noise on the interspike interval
can be effectively reduced. That is, with driving signals in certain frequency ranges, the system can show
stable periodic spiking even for relatively large noise intensities. Here, the most accurate transmission of an
external signal occurs. Outside these frequency ranges, noise of the same intensity destroys the regularity
of the spike trains by suppressing the generation of some spikes. On the other hand, we show that noise
can have a reconstructive role for certain driving frequencies. Here, increasing noise intensity enhances the
coherence of the neuronal response.

PACS. 87.10.4e General theory and mathematical aspects — 05.40.-a Fluctuation phenomena, random

processes, noise, and Brownian motion — 05.45.-a Nonlinear dynamics and chaos

1 Introduction

Nerve cells transform stimuli from the external world into
trains of spikes that propagate from cell to cell to be pro-
cessed in the central nervous system. From neurophysi-
ological experiments we know that signal processing oc-
curs in the presence of multiple sources of noise, such as
random opening and closing transitions of the ion chan-
nels in the cellular membrane, fluctuations of membrane
parameters, external input variability, etc. [1]. Nonethe-
less, neurons display an amazing ability to react appro-
priately to external perturbations and to exhibit reliable
activity patterns [2,3]. Investigation of the influence of
noise on spike generation in the presence of different ex-
ternal forcing signals is therefore of significant interest,
and a large number of studies have already been devoted
to this problem [2-8,11-28]. In particular, the effect of pe-
riodic stimulation of neurons has been extensively studied
within the framework of different lines of research: from
a classical resonance (mode locking) perspective [7—10],
from a stochastic resonance point of view [11-13], and in
terms of the spike time precision approach [20-24]. It has
been shown that noise can play both a constructive (me-
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diated by the stochastic resonance effect for the case of
a weak periodic signal) [11-13] and a destructive role for
suprathreshold signals [14-18]. The complex interactions
between noise and deterministic dynamics has recently
been examined by Huber et al. in a disease model [19].
This investigation has illustrated how noise can both en-
hance the responsiveness to weak activations and facili-
tate the occurrence of aperiodic patterns. On the other
hand, from a medical point of view, noise can result in
amplification of subclinical vulnerabilities and, thereby,
lead to disease onset or transitions to dysrhythmic mood
patterns [19].

Much work, addressing specifically the issue of spike
time reliability, have shown that it is possible for the spike
timing to be reliable through a resonance phenomenon.
The results obtained by Fellous et al. on pyramidal cells
and interneurons in rat prefrontal cortical slices have
demonstrated that subthreshold dynamics of these neu-
rons may act as a band-pass filter [20]. Therefore, maxi-
mal reliability was always achieved in the 1:1 entrainment
regime. The resonance-related enhancement in spike time
reliability was also experimentally observed in Aplysia mo-
toneurons [21,22] and numerically studied for an array
of Hodgkin-Huxley-type neurons [23] and for a stochas-
tic f-neuron [24]. Closely related to the above results, the
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phenomenon of frequency sensitivity in weak signal detec-
tion has been observed in experiments on the cricket cercal
sensory system by Levin and Miller [25]. Physically, the
existence of such a frequency range is due to the nonlinear
resonance between the intrinsic oscillation and the weak
periodic signal. When both frequencies match, the input
signal can most effectively transfer energy to the neuron
to evoke the spiking events [26]. However, this effect was
observed for the case of subthreshold forcing, when the
driving signal alone is insufficient to produce a response
from the neuron, i.e., to generate a spike. In practice, the
opposite case of strong driving signals is equally interest-
ing.
In the present paper the influence of both the driving
frequency and the noise intensity on the duration of an
interspike interval in the output of the classical Hodgkin-
Huxley model driven by a suprathreshold forcing is stud-
ied. For driving signals in certain frequency ranges (not
only the 1:1 range, but also the regime where neuron is
2:1 entrained), we observe how the system can show stable
periodic spiking even for relatively large noise intensities.
Here, the most accurate transmission of the signal occurs.
Outside these frequency ranges, noise of similar intensity
destroys the regularity of the spike trains by suppressing
the generation of some of the spikes. In this case, the well-
known destructive role of noise manifests itself. On the
other hand, the periodic order of the neuronal response
can be significantly improved by increasing the level of
noise within the frequency range where the irregular spik-
ing behavior in the absence of noise is observed. The ex-
istence of such a range is known from both numerical [27]
and experimental findings [28]. Further we show how noise
can regulate the system response for certain frequencies of
the periodical driving. We also demonstrate certain pecu-
liarities related to the color of the assumed Gaussian noise
source.

2 The model

Let us consider the dynamics of a Hodgkin-Huxley neu-
ronal model described by the following four nonlinear cou-
pled differential equations [29]:

CmV = —GKTL4(V - V) — GNam3h(V — VNa)
= GL(V = VL) + Lt (1),
m = am(l —m) — Bmnm,
h=an(l —h) = Buh,
n=ay(l—n)—Fyn. (1)

Here C,, is the capacitance of the membrane; V =V,, —
Veq is the deviation of the membrane potential V;, from its
equilibrium value V.4 [30]. The parameters Gna, Gk, and
G, are the maximal conductances for the sodium, potas-
sium and leakage channels, respectively, and Vn,, Vk, VL
are the corresponding reversal potentials. The last three
kinetic equations in (1) describe the dynamics of the gat-
ing variables. Here, m and h are responsible for the activa-
tion, respectively the inactivation of the Na™-current, and
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n controls the KT-current activation. The rate functions
a(V) and (V) are interpreted as mean transition rates of
ionic channels from the closed to the open state, and vice
versa. Values of all parameters and functions are given in
Appendix A.

In reality neurons always receive inputs from neighbor-
ing cells, and there are random fluctuations in the diffusion
of neurotransmitters, etc. Any such excitation causes cur-
rents to flow through the membrane. This is summed into
the total synaptic current. Hence, the total external stimu-
lus received by the neuron is I...(t) = Asin(2w ft) + £(t).
Note, that we assume that the sinusoidal component of
this input is suprathreshold. This means that, subjected
to this periodic drive, the system produces a response even
in the noise-free case. In addition, we consider a stochastic
component in the input. According to recent experimental
results, Gaussian stimulation mimics well the total current
to a neuron delivered by the occurrence of many uncor-
related synaptic events [31-33]. The stochastic input to
our neuron () is therefore modeled as a Gaussian noise
and considered as an additive fluctuating current in the
first equation of the system (1). In the initial analysis, we
consider white Gaussian noise with zero mean (£(t)) = 0
and with the correlation function (£(¢)¢(¢t + 7)) = Do (7).
However, we will also consider colored Gaussian noise.

In the following sections, investigations of the influence
of noise on the behavior of system (1) subjected to a signal
of amplitude A =4 p A/cm? will be presented. Together
with the mean of the interspike duration (ID)

N
. 1
T=(1)= Jm 5T @
we will consider the mean square deviation of ID (SD):

SD =\/(T?) —(T)*. 3)

Here, T; is the time between subsequent spikes in the
system’s output. The second moment <T2> is defined in
a manner analogous to equation (2). Use of characteris-
tics (2) and (3) allows us to delineate the region, where the
most effective noise suppression occurs and, consequently,
where the precision of the transferred information is opti-
mal. Additionally, to quantify the variability of the spik-
ing time, we consider a measure that is widely used in the
neuroscience literature and which can be deduced from re-
liable statistics [21,24]. This is the coefficient of variation
(CV), that is defined by the following ratio [34,35]:

@y -y
CV = (4)

This quantity measures the degree of coherence in the sys-
tem’s output and allows to detect the ordering induced by
noise within the range of irregular response.
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Fig. 1. Parameter space (f, A) illustrating different locking
regions of the forced Hodgkin-Huxley neuron for the noise-free
case. In the areas marked n:1, one spike occurs for each n =
1,2, 3 periods of the sinusoidal driving. The area between 1:1
and 2:1 contains regions where responses with rational ratios
(n:m) occur; in the area between 2:1 and 3:1 the responses
are not regular. The white region corresponds to subthreshold
forcing signals. For A = 4 uA/cm? the suprathreshold regime
is f € (16.5 = 144 Hz).

3 Results
3.1 Phase-locking domains

To illustrate the basic locking behavior of the system (1)
we start with a brief description of Figure 1, where the
regions of various modes of behavior are shown in the
frequency vs amplitude parameter space for D = 0 (see
also [36]). It is known that the mechanism underlying fre-
quency locking is a matching of two time scales: one time
scale is the frequency of the external forcing, and the other
is that of the damped oscillations around the stable focus
of the unforced nerve cell (1). Matsumoto et al. [28] have
studied the membrane response of the squid giant axon
to an externally applied sinusoidal current. Their results
show that different regular and irregular rhythms can be
observed, depending on the amplitude and frequency of
the applied current. In Figure 1, the different patterns in
the system’s response are shown with different shading
(n:1 pattern means that one spike per n stimulus cycles is
observed). The transition from 1:1 to 2:1 occurs through
a series of resonances. As it was recently shown by Par-
mananda et al. [27] for A = 3 pA/cm?, the firing num-
ber (ratio of the number of excitations to the number of
perturbations) reveals a devil-staircase-like structure. The
similar structure, with some peculiarities, is also observed
for other amplitudes of suprathreshold periodical driving.
As seen from Figure 1, irregular responses occur for am-
plitudes larger than A = 2.5 pA/cm?, while 3:1 locking
is observed for A > 3.5 uA/cm?. Signals with amplitudes
smaller than A ~ 1.6 uA/cm? can not invoke a response
for any driving frequency. In this connection it is worth
noticing, that the threshold value of the driving amplitude
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Fig. 2. Voltage profiles induced by an external suprathreshold
periodic signal of amplitude A = 4 pA/cm? for different values
of the noise intensity: (a) D = 0, (b) D = 0.1, and (¢) D =
1; f = 140 Hz. Note, the characteristic phenomenon of spike
skipping as the noise intensity increases. The corresponding
periodic modulation is shown in (d).

varies with the driving frequency: the threshold value in-
creases both for high and low frequencies. In Figure 1 the
subthreshold regime coincides with the non-shaded region.

3.2 The ambiguous role of noise depending
on the driving frequency

3.2.1 Destructive role of noise

Let us start by showing a couple of voltage traces. Figure 2
presents the temporal variation of the membrane potential
in the absence of noise and when noise of two different in-
tensities, D = 0.1 and D =1, is added. Parameters of the
periodic driving are: A = 4 uA/cm? and f = 140 Hz. With
these parameters our system is subjected to a suprathresh-
old signal and, in accordance with Figure 1, a periodic
chain of spikes is observed. Note, however, that due to the
finite response time and the refractive period that follows
each spike, only 1/3 of the potential spikes are realized. In
the presence of noise a disruption of this periodicity occurs
and the skipping of spikes increases with increasing noise
intensity. This destructive role of fluctuations in the pres-
ence of a suprathreshold signal is well-known and has been
demonstrated by several authors both experimentally [25]
and in computational models [14-17].

In this section we demonstrate that the negative in-
fluence of noise can be effectively suppressed via a proper
choice of the driving frequency. With this aim the influence
of noise on the process of spike generation is presented in
Figure 3 for three different values of the driving frequency
f =18 Hz, f = 60 Hz, and f = 140 Hz with D = 0.5.
According to Figure 1, all three signals are suprathreshold
and, in the deterministic case induce regular periodic spike
generation. Moreover, the two signals with the smaller fre-
quencies invoke a system response in the 1:1 regime, while
for the highest frequency the system is 3:1 entrained. As
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Fig. 3. Voltage profiles induced by an external suprathreshold
periodic signal with A = 4 pA/cm? for different frequencies:
(a) f = 18 Hz, (¢) f = 60 Hz, and (e) f = 140 Hz. The
corresponding periodic modulations are shown in (b), (d), and
(f), respectively. D = 1. The phenomenon of spike skipping is
practically absent for f = 60 Hz. For f = 140 Hz, on the other
hand, only about 23% of the potential spikes are realized.

illustrated in Figure 3, noise suppresses the generation of
some spikes but not equally for all frequencies. For in-
stance, around f = 60 Hz, the system demonstrates sta-
bility to noise: A periodic chain of spikes, as for D = 0, is
observed, and each period of the forcing signal produces
one spike. Here, the transmission of the signal occurs with
high reliability.

To get a broader picture, Figure 4 shows computed
values of the interspike intervals, normalized to the pe-
riod of the sinusoidal forcing, as function of the driving
frequency for D = 0 (a) and D = 1 (b), respectively. For
the deterministic case, Figure 4a, five different behaviors
of the system’s response are clearly observed, cf. Figure 1.

By inducing skipping of spikes, noise destroys the reg-
ular structure. However, as clearly revealed by Figure 4b,
two frequency bands exist where the influence of noise
is minimal. In the intervals f € (30 + 60 Hz) and f €
(85 =+ 105 Hz), even relatively large values of the noise
intensity leave the system’s response nearly unaffected.
Here, noise leads to a slight shift of the spikes in the volt-
age traces as reflected in a slight slope of the regions with
1:1 and 2:1 entrainment in Figure 4b. By contrast, the sys-
tem’s response in the region with 3:1 locking demonstrates
strong sensitivity to noise. Noise effectively destroys the
periodic solution in this region and leads to firing with no-
ticeably larger intervals between the spikes. In this way,
fluctuations merge the regions where irregular firing and
3:1 entrainment are observed in the deterministic case. For
frequencies outside the region of suprathreshold driving,
noise leads to a multimodal distribution of the interval du-
rations. Here, the system’s response is sensitive to noise,
and fluctuations play an essential role.

Let us now focus on the averaged ID and consider
its dependence on the frequency of the external periodic
forcing. For the deterministic case the normalized 1D, i.e.
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Fig. 4. Bifurcation plot of the normalized interval duration,
i.e. Trp/Ts, versus the driving frequency for the deterministic
case D =0 (a) and in the presence of noise D =1 (b).

Trp/Ts, has three well-defined horizontal plateaus corre-
sponding to three different phase-locking patterns (solid
curve in Fig. 5a). At the same time, the period of the sig-
nal T decreases as 1/ f with increasing driving frequency.
Consequently, to maintain a constant value, the mean of
ID should also decrease with the growth of f. Thus, at
the right ends of each plateau, the mean duration of ID
should become smaller. For these frequencies of external
driving the most rapid generation of spikes in the output
of the system occurs.

The mean-square deviation of ID in dependence of
the driving frequency is illustrated in Figure 5b. Inspec-
tion of this figure shows that the standard deviation of
ID (SD) has two deep minima located in the regions
of 1:1 and 2:1 patterns, which are much deeper than
the minimum corresponding to the 3:1 regime. Moreover,
it is seen that, in the small noise limit, the minimum
of SD scales as the square root of the noise intensity:
SD1/SDy & +/D1/Ds. In a qualitatively similar situa-
tion (switching under suprathreshold driving) the similar
dependence was observed for the timing errors in the so-
called Rapid Single-Flux-Quantum circuits in the presence
of thermal noise [37]. Another peculiarity of Figure 5b is a
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Fig. 5. (a) Mean interval duration, (b) standard deviation, and
(c) coefficient of variation as functions of the driving frequency
for A =4 pA/cm?.

maximum of SD that is observed for the frequency range
between regimes with 1:1 and 2:1 locking. This maximum
is not produced by the noise alone, but also by the applied
calculation method for SD (see Eq. (3)): due to the coexis-
tence of the different IDs within this range (see Fig. 4) this
maximum exists even in the noise-free case. It is known
that for this range the generation of spike trains is not so
reliable as for the 1:1 regime [20,22]. In the following we
will not focus on this range, but consider the region where
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Fig. 6. (a) Number of spikes as a function of the driving fre-
quency for the deterministic case (black circles) and when noise
with D = 1 is added (gray diamonds). Interval duration ver-
sus spike number in the output for (b) D =0 and (c) D =1,
f = 126.5 Hz. (d) Coefficient of variation (simbols) with in-
terpolations (curves) vs noise intensity for two values of driv-
ing frequency: f = 126.5 Hz (white circles, dashed line) and
f =128.5 Hz (black circles, solid line).

the negative role of noise is minimal. From Figure 5b it is
seen, that within the 1:1 range, SD decreases for higher fre-
quencies. Consequently, the effect of noise is significantly
reduced in the frequency interval where the most frequent
response occurs. This implies that signal transduction will
be more effective in this frequency range. The similar de-
pendence for the coefficient of variation in Fig. 5¢ confirms
this fact. In the 2:1 range, SD remains nearly independent
of f and increases proportionally with the noise intensity,
also indicating the effective suppression of noise.

3.2.2 Constructive role of noise

In this section we consider the frequency range f €
(119 =+ 132 Hz). As mentioned above (see Fig. 1), this
is the range in which irregular responses occur. Even for
relatively large noise intensities a similar structure as for
D = 0 is observed. In the deterministic case, the mean
spiking frequency is smaller than the frequency of the
driving signal. As seen from Figure 6, fluctuations lead
to an increase of the number of spikes in the output of the
system and, consequently, to the disappearance of long
IDs within this range. As previously described by Huber
et al. [19], the presence of noise causes the mean spiking
frequency to increase. In our case, for the system driven by
a periodic signal, fluctuations cause the mean output fre-
quency to increase and to approach the forcing frequency.



534

50—
4 — b
Q 457 o D
s 3 ey
2 404 —a— DS =
g 7 X
3 B s
g 7 A F ey
T 3 .22 e
Q: 30 e .
§ 259 e
3 a
2.0 1 T ‘ T T ‘ T T ‘( )
118 123 128 133
" 10t)
4 — D0
I —— b1
15— D5 o g37e
~ — 4 S S
g 7 -2 a —a 4
& 10— o e v . A
- 2 aa oy & & ST -
8 7 Y
Sj
] ©
0 T ‘ T T ‘ T T ‘
118 123 128 133
S(Hz)
0.7—
E —_ DA
0.6
3 —— D=1
05— —a— D=5
E .o
043 N IS0 'S
g = Py Pt s
QO 033
02—
0.1
E (e
0.0 1 T ‘ T T ‘ T T ‘
118 123 128 133
Sf(Hz)

The European Physical Journal B

50—
4 — b
= 45 e a
= 3 —— po e
& 404 —A— D= PR NN
1S = M o
3 3 R *ve
= 3.5 AN~ - 4
s 3 o7 AT
Q 304 S
g B /5
§ 25—
3
2.0 7’07 T ‘ T T ‘ T T ‘(b)
118 123 128 133
0 f(H)
-4 —— b ot
I —— bt Lot
37 —a b e\
. S ol
2 ] RN v
& 10 -2
Q ] iy
%] 1,z
Si ’
] (d
0 T ‘ T T ‘ T T ‘
118 123 128 133
S(Hz)
0.7—
E —_ DA
063 o o o
05— —a— D=5 aat g
o P e e S L RS
04 A ot
NS = y
C 334+
4 e
024 &
ER
0.1 (t)
0.0 = 1 T ‘ T T ‘ T T ‘
118 123 128 133
S(Hz)

Fig. 7. (a) Mean interspike duration, (c) standard deviation of ID, and (e) coefficient of variation as functions of the driving
frequency for t. = 1 ms, A = 4 pA/cm?. The same dependences for the Ornstein-Uhlenbeck stochastic process with a correlation
time ¢, = 10 ms are shown in (b), (d) and (f). Solid lines correspond to the case of the white Gaussian noise.

From a functional point of view it seems optimal that the
two frequencies are as close to one another as possible. We
thus conclude that the presence of noise under these cir-
cumstances plays a constructive role. To characterize the
ordering effect induced by the noise we have calculated the
coefficient of variation (CV) for two different frequencies
(f =126.5 Hz and f = 128.5 Hz) in the range of irregular
response. As illustrated in Figure 6d, CV tends to decrease
with increasing noise intensity. For some forcing frequen-
cies, this variation is non-monotonic with a maximum at
certain noise intensity. However, further increase of the
noise always leads to decreasing values of CV. Hence, in
this regime, the presence of noise generally enhances the
coherence of the neuronal response.

In Figure 7a the mean ID for the deterministic case
and for two different values of the intensity of the white
Gaussian noise, namely D = 1 (diamonds) and D = 5
(triangles), is shown by the solid lines. Stronger noise is
seen to induce a more ordered behavior of the neuronal
response. Note, however, that this phenomenon strongly

depends on the driving frequency. Closer inspection of
Figure 7a shows a maximal decrease of the mean ID near
the frequency f = 126.5 Hz. Here, the output frequency
significantly increases with the noise amplitude (up to
22.4% for D = 1 and 37% for D = 5). However, the de-
crease of SD is not maximal at this frequency. Rather,
the minimal variance of the IDs in the output of the sys-
tem is observed in the vicinity of the driving frequency
f = 128.5 Hz, Figure 7c. Here, SD changes significantly
with increasing noise intensity. Namely, for D = 1 SD
drops about 32%, and for D = 5 the drop is about 50% rel-
ative to the deterministic case. For this driving frequency
the most precise generation of spikes occurs. The values of
coefficient of variation in dependence on driving frequency
are shown in Figure T7e.

Let us hereafter examine the role of the color of the
noise for the neural response. With this aim we con-
sider system (1) subjected to an Ornstein-Uhlenbeck (OU)
stochastic process 7(t) with zero mean and a correlation
function (n(¢t)n(t + 7)) = (D/tc) exp(—7/t.). This may be
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described by the following equation [38]:

(5)

dt ot te

Here, as above, £(¢) is a source of Gaussian white noise
with intensity D. The parameter {. is the correlation
time, which is responsible for the bandwidth of the noise
(i.e., the color). In the following numerical simulations we
consider the same characteristics, namely mean ID, SD
and CV (Fig. 7), for two values of the correlation time:
t. = 1 ms and ¢, = 10 ms. In the first case a similar be-
havior as for the white Gaussian noise is also observed for
OU noise (dashed lines in Figs. 7a, 7c, 7e). The percent-
age relations characterizing the quality of the neuronal
response change slightly. In the case t. = 10 ms, however,
the bandwidth of the noise becomes narrower. The char-
acter of the neural response for driving frequencies where
chaotic behavior is observed, is therefore dependent on the
high frequency components of the noise spectrum. Increase
of the noise intensity here leads to a smaller decrease of
the mean ID: about 6% for D = 1 and 15% for D = 5,
Figure 7b. For this type of noise the decrease of SD does
not exceed 6% for D = 1 and 9.6% for D = 5, Figure 7d.

4 Conclusions

The influence of both the driving frequency and the noise
intensity on the duration of the interspike interval in the
output of a Hodgkin-Huxley model was examined. We ob-
served that for suprathreshold periodic signals with fre-
quencies in the ranges where the neuron is 1:1 or 2:1
entrained, the system can show stable periodic spiking
even for relatively large noise intensities. In both of these
ranges, the jitter (that is frequently associated with the
reliability of transmitted information [20-22]) was low.
Thus, the transmission of the signal here occurs with high
precision. Outside these frequency ranges, noise of simi-
lar intensity destroys the regularity of the spike trains by
suppressing the generation of some of the spikes. Here, the
well-known destructive role of noise manifests itself.

As it is known from both numerical [27] and ex-
perimental studies [28], a frequency range exist where
an irregular spiking behavior is observed for periodically
stimulated neurons. We have shown that within this range
increasing the noise improves the regularity of the system’s
response. The role of the color of the Gaussian noise source
was also examined. The response to noise in the regime of
irregular spiking is in principle unpredictable with regard
to the duration of interspike intervals. But this time inter-
val displays a clear tendency to a decrease with increasing
noise level. This observation allows us to conclude that
the constructive role of noise can be of significance from
a biological point of view.
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Appendix A

Parameter values used in the simulations for the Hodgkin-
Huxley neuron model are:

Cm Membrane capacitance 1 uF/ cm?
Gna  Maximal sodium conductance 120 mS/cm?
Gk  Maximal potassium conductance 36 mS/cm?
Gr, Leakage conductance 0.3 mS/cm?
WNa Sodium reversal potential 110 mV
Vk Potassium reversal potential —12 mV
Vi Leakage reversal potential 10.6 mV

For these conditions the Hodgkin-Huxley model has
a unique globally asymptotically stable equilibrium point
which represents the resting state of the cell membrane.

The auxiliary functions a(V') and B(V') are given by:

Ay, = Oy

Vi—V -V
; ﬂm = 6mo eXp ( ) ’
w-v) _ Doy
eXp( ﬂml) ! (6)

with ay,, = 0.1(mVms)~, V4 = 25 mV, 9,,, = 10 mV,
Bme = 4 (ms)~1, and 9,,, = 18 mV.

_ _ ﬁhg
Qp = Qp, €XP (19_}“) , o Bh= W7 (7)

ho

with ap, = 0.07 (ms)™1, ¥5, =20 mV, By, = 1 (ms)~!,
Vo =30 mV, and 95, = 10 mV.

V=V v
Op = Qno =~~~ Bn = ﬂno €xp <—) )
exp (%) -1 U,

®)
with a,, = 0.01(mVms)~! V3 = 10 mV, 9,,, = 10 mV,
By = 0.125 (ms) !, and 9, = 80 mV.
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